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Abstract: In this paper, with a revised POLYMER (POLYnomial based approach applied to
MERIS data) atmospheric correction model, we present a novel scheme (two-angle atmospheric
correction algorithm, termed as TAACA) to remove atmospheric contributions in satellite ocean
color measurements for coastal environments, especially when there are absorbing aerosols.
TAACA essentially uses the same water properties as a constraint to determine oceanic and
atmospheric properties simultaneously using two same-day consecutive satellite images having
different sun-sensor geometries. The performance of TAACA is first evaluated with a synthetic
dataset, where the retrieved remote-sensing reflectance (Rrs) by TAACA matches very well
(the coefficient of determination (R2) ≥ 0.98) with the simulated Rrs for each wavelength, and
the unbiased root mean square error (uRMSE) is ∼12.2% for cases of both non-absorbing and
strongly absorbing aerosols. When this dataset is handled by POLYMER, for non-absorbing
aerosol cases, the R2 and uRMSE values are ∼0.99 and ∼7.5%, respectively, but they are ∼0.92
and ∼39.5% for strongly absorbing aerosols. TAACA is further assessed using co-located VIIRS
measurements for waters in Boston Harbor and Massachusetts Bay, and the retrieved Rrs from
VIIRS agrees with in situ measurements within ∼27.3% at the visible wavelengths. By contrast, a
traditional algorithm resulted in uRMSE as 3890.4% and 58.9% at 410 and 443 nm, respectively,
for these measurements. The Rrs products derived from POLYMER also show large deviations
from in situ measurements. It is envisioned that more reliable Rrs products in coastal waters could
be obtained from satellite ocean color measurements with a scheme like TAACA, especially
when there are strongly absorbing aerosols.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since the Coastal Zone Color Scanner (CZCS) [1,2], a series of ocean color satellites have been
successfully launched aiming for quantifying marine phytoplankton concentrations. Among
others, the extensively used satellite ocean color data normally come from the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) [3,4], the MODerate-resolution Imaging Spectroradiometer
(MODIS) [5], the Medium Resolution Imaging Spectrometer Instrument (MERIS) [6] and the
Visible Infrared Imager Radiometer Suite (VIIRS) [7]. At the top of atmosphere (TOA), these
ocean color sensors after radiometric correction directly measure the radiance (Lt), which can be
converted to TOA reflectance:

ρt(λ) = πLt(λ)/µ0(λ)F0(λ) (1)
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Here µ0 and F0 are the cosine of solar zenith angle and the extraterrestrial solar irradiance,
respectively (definition of symbols used in this paper is included in Table 1). For the derivation
of primary water constituents, firstly, the contributions from atmosphere and ocean surface
must be removed through an atmospheric correction (AC) algorithm, yielding the water-leaving
radiance (Lw). Because the magnitude of this radiance also varies with downwelling irradiance
(Ed), water-leaving reflectance (ρw = πLw/Ed), or remote-sensing reflectance (Rrs = Lw/Ed, sr−1),
is more commonly used. ρw and Rrs are interchangeable based on these definitions. Further,
primary water properties in the upper layer, such as the chlorophyll concentration (Chl), the
concentration of suspended particulate matter (SPM) or the inherent optical properties (IOPs),
can be estimated from ρw or Rrs using bio-optical algorithms [8,9].

Table 1. List of symbols and their descriptions.

Symbol Description Units

Lt radiance at top of atmosphere W m−2 sr−1 nm−1

Lw water-leaving radiance W m−2 sr−1 nm−1

Rrs water remote-sensing reflectance sr−1

rrs

ratio of the upwelling radiance to the downwelling irradiance evaluated just below
the surface sr−1

ρt reflectance at top of atmosphere —

ρpath atmospheric path reflectance —

ρr reflectance from Rayleigh scattering in the absence of aerosol —

ρaer reflectance from aerosol scattering in the absence of gases —

ρra interaction term between Rayleigh and aerosol scattering —

ρg sun glint reflectance —

ρ’g estimated sun glint reflectance —

∆ρg residual sun glint reflectance —

ρw water-leaving reflectance —

ρA aerosol reflectance (ρA = ρaer+ ρra) —

tv total transmittance from water to sensor —

ts total transmittance from solar to water —

toz transmittance of the ozone —

T direct transmittance —

c0, c1, c2 fitting parameters in the polynomial atmospheric model —

m wavelength angstrom for aerosol scattering spectrum —

Chl chlorophyll concentration mg/m3

bbNC backscattering parameter in a bio-optical ocean reflectance model m−1

a total absorption coefficient, aw + aph + adg m−1

adg absorption coefficient of the sum of detritus and gelbstoff m−1

aw,ph absorption coefficient of pure seawater and phytoplankton pigments, respectively m−1

bb total backscattering coefficient, bbw + bbp m−1

bbw,bp backscattering coefficient of pure seawater and suspended particles, respectively m−1

S spectral slope parameter of adg nm−1

Y wavelength angstrom of particle backscattering spectrum —

For the signal detected at TOA, the reflectance ρt in general can be written as [10]:

ρt(λ) = tg(λ)[ρpath(λ) + ts(λ)tv(λ)πRrs(λ)] (2)
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Here, tg is the transmittance of the gases (including oxygen, water vapor, ozone, etc.); ts and tv
represent the atmospheric transmittance from solar to water and water to sensor, respectively.
Generally the water-leaving contribution (πRrs) at TOA is much smaller than the atmospheric
path reflectance (ρpath), which indeed requires highly accurate AC algorithms to derive reliable
Rrs for inversions of in-water properties [11].

In the past decades, the development of AC algorithms has achieved great progress [11]. For
major satellite ocean color missions such as SeaWiFS and MODIS, the commonly implemented
algorithm followed the scheme presented in Gordon and Wang [12] and Wang [13]. In general,
“black pixel” (BP), i.e. Rrs is negligible, is assumed in near-infrared (NIR) wavelengths (for
oligotrophic waters [12]) or in the short-wave infrared (SWIR) wavelengths (for waters with
high SPM concentrations [14,15]). Based on this assumption, ρt at these wavelengths consist
of only atmosphere and surface signals. After removing the Rayleigh-scattering component
and surface reflectance, the spectral variation of the remainder is used to search for the two
most applicable aerosol models through a pre-defined aerosol look-up table (LUT) generated
by radiative transfer simulations (e.g., [16]). Then the selected aerosol models are employed to
calculate the aerosol’s contribution to ρt in the visible spectrum. The main challenge with this
algorithm is accounting for the effects of absorbing aerosols [17,18]. When strongly absorbing
aerosols, such as soot or dust aerosols, are present in the scene, the BP approach fails because
it is difficult to obtain detailed information of strongly absorbing aerosol (its single scattering
albedo ω0(λ) and aerosol optical thickness τa(λ)) based on measurements in the NIR or SWIR
spectral region [17,18]. Moreover, as shown by Gordon [19], the altitude of absorbing aerosols is
also a factor affecting the contribution of atmosphere to ρt. Therefore, the classical assumption
that aerosol’s contribution is independent of its altitude no longer holds when there are absorbing
aerosols.
Alternative approaches designed to improve AC involving absorbing aerosols have also been

proposed, including methods of spectral optimization to determine the aerosol reflectance ρA
(ρA = ρaer+ρra) and ρw simultaneously. One example was developed by Gordon et al. [19], which
adopted more realistic aerosol models specifically to better simulate the spectral variation of the
absorbing aerosol contribution to ρt, while also took into account the altitude of absorbing aerosols
in the atmosphere. In order to find the best ten sets of aerosols, this approach needs to establish
LUTs of different aerosol models in advance, therefore it is computationally intensive. Another
scheme was proposed by Chomko and Gordon [20], also based on the spectral optimization
algorithm, which did not establish LUTs of strongly absorbing aerosol models in advance, but
instead applied a revised Junge power-law size distribution of aerosol particles to simulate
the aerosol’s optical properties (ω0(λ), τa(λ) and the phase function). It is found that such an
approach can be applied to aerosols where its absorption index has no dependence on wavelength,
e.g., black carbon. However, with colored absorbing aerosols being in present, e.g., dust, the
aerosol properties were not well retrieved, as its absorption is a function of wavelength [21]. The
above two approaches both employed a bio-optical ocean reflectance model together with the
use of the radiative transfer (RT) method to simultaneously estimate water and aerosol optical
properties through non-linear optimization of the measured ρt.
Recently, Steinmetz et al. [22] proposed a POLYnomial based algorithm to process MERIS

measurements (POLYMER), which shows significant improvement in recovering pixels under
sun glint. Zhang et al. [23] applied the POLYMER scheme to MODIS measurements for a wide
range of water properties, also found improved ability to deal with sun glint and increased data
coverage. Further, POLYMER has been applied to Sentinel-2 MSI and Sentinel-3 OCLI data
over optical complex waters, and selected as an alternative algorithm with good performance
for these measurements [24–26]. Different from the traditional AC schemes that uses LUTs for
aerosol contributions in ρt, POLYMER assumes that the atmospheric contributions can simply
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be described using a polynomial function of wavelength λ:

ρta(λ) = c0 + c1λm + c2λ−4 (3)

where ρta is the atmospheric reflectance after correction of gaseous absorption, Rayleigh
contribution, and initial sun glint effect. c0−2 are the fitting parameters with varying units;
term c2λ

−4 represents contributions from Rayleigh-aerosol inter-scattering; and the parameter m
represents wavelength angstrom for aerosol scattering spectrum, with a fixed value of -1 used in
POLYMER. Then the spectrum of water reflectance can be derived through spectral matching
method after combining Eq. (3) with a bio-optical ocean reflectance model [27]. A unique feature
of POLYMER is that it does not need a LUT for aerosol contributions. However, as pointed
out in Steinmetz et al. [22], it is not clear if POLYMER will perform similarly well if strongly
absorbing aerosols exit.
The ocean color community also explored other approaches to deal with satellite Rrs in the

presence of strongly absorbing aerosols. For instance, Oo et al. [28] placed constraints onto
Rrs(410) within their AC procedures and reported improved satellite estimations. Wang and Jiang
[29] tested an algorithm to force the negative VIIRS Rrs(410) values to zero so that the aerosol
contributions can be estimated more accurately, leading to ultimately improved Rrs products.
Furthermore, based on Rrs spectral shape, Wei et al. [30] proposed a blue-band estimation
algorithm to improve the low-quality satellite Rrs in the blue bands for coastal and inland waters.
For all the above schemes, whether it is the LUTs-based scheme or the spectral optimization-

based scheme, one common feature is that they all operate on measurements from one sun-sensor
geometry for the derivations and treat multiple measurements of the same pixel (e.g., the
Geostationary Ocean Color Imager (GOCI) and Himawari-8) independent to each other. One
alternative way to improve the performance of atmospheric correction is to maximize the use
of information measured from multiangle and polarimetric observations [31–33], such as those
from the POLarization and Directionality of the Earth’s Reflectance (POLDER), the Research
Scanning Polarimeter (RSP) and the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI).
For instance, AirMSPI can obtain measurements for a given area from nine viewing angles nearly
simultaneously. Xu et al. [31] thus developed a joint retrieval algorithm including a multi-angle
smoothing constraint for the AirMSPI dataset using optimization approach. For polar orbiting
passive satellite sensors (e.g., MODIS and VIIRS), although no such multi-angle polarization
measurements of the same pixel, there could be two or more satellite images for a given area on
the same day, with a time gap between the two consecutive overpasses quite short (usually less
than 2 hours). For instance, the overlapping areas for VIIRS can be over 50% for latitudes ∼26°
and increases towards polar regions. We may thus assume the optical properties of marine water
during this short period do not vary between the two consecutive satellite measurements, and
then use this constraint to achieve better atmospheric correction by combining the two sun-sensor
geometries, whereas the atmospheric path reflectance is highly sensitive to viewing geometries.
A conceptual diagram of this two-angle atmospheric correction algorithm (TAACA) is shown in
Fig. 1, where the atmospheric contributions are different for the two same-day observations, but
water contributions remain the same. Note that the water reflectance is less angular dependent
for the remote sensing domain [34], and the resulted Rrs from satellite can be considered as an
“average” ocean reflectance of that short period.

Here we lay out the concept, detailed components, and extensive evaluations of the TAACA
scheme that combines two consecutive satellite images in the data processing. The paper
is organized such that a brief review of POLYMER is provided first, followed by a detailed
description of TAACA. We further show results of applying TAACA to both synthetic and VIIRS
measurements, along with discussions of the advantage for improving the quality of retrieved Rrs
spectrum by TAACA for coastal waters where there are multiple satellite measurements in a day.



Research Article Vol. 28, No. 18 / 31 August 2020 / Optics Express 26957

Fig. 1. Conceptual diagram showing the relationship between top-of-atmosphere reflectance
(ρt) of the same location measured from two different sun-sensor geometries within a short
time interval. ρw represents the contribution from water, which is assumed to be constant
for the two observation geometries; ρt1st and ρt2nd represent ρt from the two sun-sensor
geometries.

2. AC algorithm based on two-angle observations

2.1. Brief overview of POLYMER

Here a brief summary of the POLYMER atmospheric correction scheme [22] is presented for
understanding the basis of TAACA. In Eq. (2), ρpath involves various processes associated with
radiative transfer in the atmosphere, where ρt can be decomposed as [12]:

ρt(λ) = toz(λ)[ρr(λ) + ρaer(λ) + ρra(λ) + T(λ)ρg + ts(λ)tv(λ)πRrs(λ)] (4)

toz is the transmittance of the ozone layer, ρr is the Rayleigh reflectance due to multiple scattering
without aerosol, ρaer is the aerosol reflectance due to multiple scattering without air molecule,
ρra accounts for the various coupling term between air molecular and aerosol scattering, ρg is due
to sun glint, T is the direct transmittance, and Rrs is the remote-sensing reflectance determined by
optical properties of water. Note that the terms for gas (e.g., oxygen and water vapor) effects are
omitted as they are either avoided in band design or can be easily calculated using gas information
[12,13].
The goal of atmospheric correction is to obtain precise Rrs from Eq. (4), which requires

accurate estimation of the other components. Specifically, toz is calculated as following:

toz(λ) = exp[−τoz(λ)(1/cos(θo) + 1/cos(θv))] (5)

where τoz is ozone optical thickness determined from the total ozone concentration Uoz (Dobson
Unit) obtained from ECMWF data (European Centre for Medium-Range Weather Forecasts). θo
is the solar zenith angle and θv is the satellite viewing zenith angle.
ρr is searched from a LUT calculated by the Successive Order of Scattering radiative transfer

code (SOS) [35]. Tρg is calculated combining the Cox and Munk [36] model with wind speed
from the ECMWF data, represented as ρ’g, with the residual glint represented as ∆ρg. Also, the
terms tstv are saved in LUTs based the calculation using the SOS code in advance.
After knowing toz, ρr and ρ’g in ρt, Eq. (4) can be rewritten as:

ρt(λ)

toz(λ)
− ρr(λ) − ρ

′
g(λ) = ∆ρg + ρaer(λ) + ρra(λ) + ts(λ)tv(λ)πRrs(λ) (6)
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If we replace the left side of Eq. (6) as ρ’ and the first three terms of the right side as ρta. Then
Eq. (6) can be rewritten as:

ρ′(λ) = ρta(λ) + ts(λ)tv(λ)πRrs(λ) (7)

The basic principle of the POLYMER algorithm is to model ρta using a polynomial function
of wavelength as Eq. (3). c0 represents the spectrally flat components including the residual
sun glint and the scattering contributions due to thin clouds and coarse mode aerosols. c1λ

m

with the value of m fixed as -1 describes the spectral dependence of the aerosol signal, and
c2λ
−4 characterizes the residual glint along with the couplings between the aerosol and Rayleigh

scattering. Substituting Eq. (3) into Eq. (7) leads to:

ρ′(λ) = c0 + c1λ−1 + c2λ−4 + ts(λ)tv(λ)πRrs(λ) (8)

where Rrs is further modelled using a bio-optical ocean reflectance model with two parameters:
Chl and a backscattering coefficient bbNC [37]. Therefore, Eq. (8) can be further written as:

ρ′(λ) = c0 + c1λ−1 + c2λ−4 + ts(λ)tv(λ)πRrs(Chl, bbNC, λ) (9)

Using a simplex method [38], the five parameters (c0, c1, c2, and Chl, bbNC) can be derived with
the best spectral fit of ρ’ through a spectral matching optimization. From the retrieved parameters
(c0, c1, c2), Rrs is then calculated as:

Rrs(λ) =
ρ′(λ) − (c0 + c1λ - 1 + c2λ - 4)

ts(λ)tv(λ)π
(10)

2.2. AC based on two sun-sensor viewing geometry observations

2.2.1. Modification of the atmospheric model

In the standard POLYMER system, the parameter m in Eq. (3) is set as -1, which implies a
spectral variation from non-absorbing aerosols. In the condition of strongly absorbing aerosols,
the value of -1 for parameter m may not correctly account for the aerosol effects. In our new
development, m is considered as a variable in the AC process. Consequently, the atmospheric
parameters in the spectral optimization are m and c0−2. Meanwhile, we replaced λ in Eq. (3) with
the ratio of 400 nm to λ (in nm), thus Eq. (3) is rewritten as:

ρta(λ) = c0 + c1(400/λ)m + c2(400/λ)4 (11)

The essence of Eq. (11) is the same as Eq. (3), but the units of c0−2 are reflectance, rather vague
or varying as in Eq. (3).

2.2.2. Modification of the water remote-sensing reflectance model

The ocean reflectance in POLYMER is represented by two parameters: Chl, and a backscattering
coefficient bbNC so that at each wavelength Rrs=Rrs(Chl, bbNC). However, this model is not
applicable in coastal waters where at least the detritus and gelbstoff (dg) will not co-vary with
Chl, and these components have significant impact on Rrs in the blue bands. Here we adopt an
IOP-based remote-sensing reflectance model [39], with the various components and flowchart
shown in Fig. 2. To briefly summarize, the total absorption coefficient (a) is a sum of the
contributions of pure seawater (aw), phytoplankton pigments (aph), and detritus-gelbstoff (adg).
The total backscattering coefficient (bb) is a sum of that of pure seawater (bbw) and suspended
particles (bbp). Values of aw and bbw are kept as constant, and are taken from Lee et al. [40] and
Pope and Fry [41], and Morel [42], respectively. aph, adg, and bbp vary with aquatic environment,
which are modelled as a function of wavelength (see details in Fig. 2). For spectral slope of adg
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(S), a representative average of 0.016 nm−1 is used. Parameter Y represents the spectral variation
of bbp, which is required to be known in order to obtain a bbp spectrum. The values of Y can vary
over a range of ∼0-2.0 [8], which can influence the retrieval of Rrs. The determination of Y in
TAACA will be described in detail in section 2.2.3.

Fig. 2. Components and flowchart of the inherent optical properties used to model
remote-sensing reflectance (Rrs), in order to estimate top-of-atmosphere reflectance.

Given the variousmodels for aph, adg, and bbp spectra, the IOP-based remote-sensing reflectance
can be written as

R mod
rs (λ) = f [aph(λ), adg(λ), bbp(λ)] (12)

For rigorous evaluation of satellite Rrs products, it is recommended to consider the BRDF effect
of water-leaving reflectance (e.g., [43]). However, since the Rrs in the remote-sensing domain
varies less than ∼15% for a wide range of sun-sensor geometries [34], for this prove-of-concept
study we omit this slight angular variation when modelling Rrs(λ) for the two sun-sensor angular
geometries. In addition, it is because that the influence of this factor is likely much smaller
compared with other factors in the AC process, although theoretically such variations can be
incorporated in the processing system [44].

2.2.3. Retrieval of water and atmospheric properties from two-angle observations

Among the modified atmospheric and oceanic Rrs models, there are seven free variables (m, c0, c1,
c2, aph(440), adg(440), and bbp(440)) for each measured ρt spectra, which is an underdetermined
system and is difficult to solve for band settings like VIIRS. While atmospheric contributions are
highly dependent on solar and viewing geometry, and assuming that water’s optical properties
do not vary within the short time interval during a day, we thus propose to employ ρt from two
sun-sensor geometries measured of two consecutive images to solve oceanic and atmospheric
properties simultaneously (see the conceptual diagram of Fig. 1). Therefore, the objective of
TAACA scheme is to find a set of optimized values for both atmospheric and oceanic parameters
described above to achieve the best spectral fit of ρt(λ) for two different sun-sensor angular
geometries on the same day. Because ρw(λ) is kept the same for the two ρt(λ) measurements, it
works as a constraint of the lower boundary of the coupled atmosphere-ocean system (see Fig. 1),
TAACA thus offers an innovative approach to handle atmospheric correction, especially when
there are absorbing aerosols. On the other hand, because water properties are kept the same when
processing the two consecutive measurements, the final retrieved Rrs is a representation of the
“averaged” water properties of the two.

We omit the effect of high sun glint by focusing on measurements away from the sun glint
geometry. In the standard POLYMER system, Steinmetz et al. [22] utilized a polynomial function
as Eq. (3) to represent the atmospheric reflectance after Rayleigh correction. However, when
strongly absorbing aerosols are present, due to altitude dependence, the commonly developed
LUTs for Rayleigh contribution are no longer applicable. Therefore, here we use the similar



Research Article Vol. 28, No. 18 / 31 August 2020 / Optics Express 26960

functionality as Eq. (11) for atmospheric reflectance, but with Rayleigh contribution included in
the term c2(400/λ)4, which also includes the Rayleigh-aerosol coupled contributions. The TOA
reflectance spectrum of a pixel for the first observation (superscript “i”) is thus modelled as:

ρ̂i
t(λ) = tioz(λ)[c

i
0+ci

1(400/λ)
mi
+ci

2(400/λ)
4+tis(λ)t

i
v(λ)πR mod

rs (λ, aph(440), adg(440), bbp(440))]
(13)

and the TOA reflectance spectrum of the same pixel for the second observation (superscript “j”)
is then as:

ρ̂
j
t(λ) = tjoz(λ)[c

j
0+cj

1(400/λ)
mj
+cj

2(400/λ)
4+tjs(λ)t

j
v(λ)πR mod

rs (λ, aph(440), adg(440), bbp(440))]
(14)

As previously described, the absorption of oxygen and water vapor are also omitted in these
expressions. With the above considerations, there are eleven unknown variables for spectral
optimization: c0i, c1i, c2i, mi, c0j, c1j, c2j, mj, aph(440), adg(440) and bbp(440). The variation of
the atmospheric reflectance is included in the values of parameters (c0i, c1i, c2i, mi) and (c0j, c1j,
c2j, mj). The cost function for the spectral optimization is defined as the err function similar to
Lee et al. [45]:

err = 0.5 × err1 + 0.5 × err2 (15a)

err1 =

√
862∑
410
(ρi

t−ρ̂
i
t)
2

7 +

862∑
410
(ρ

j
t−ρ̂

j
t )
2

7

(
862∑
410

ρi
t)/7 + (

862∑
410

ρ
j
t)/7

(15b)

err2 =

√
862∑
410
(R mod ,i

rs −
(ρ′,i−ρ mod ,i

ta )

π tistiv
)

2

7 +

862∑
410
(R mod ,j

rs −
(ρ′,j−ρ mod ,j

ta )

π tjstjv
)

2

7

(
862∑
410

R mod ,i
rs )/7 + (

862∑
410

R mod ,j
rs )/7

(15c)

with err1 measuring the minimization of ρt of the two measurements, while err2 measuring the
minimization of Rrs. A use of combination between err1 and err2, rather than err1 alone, helps
to achieve stable optimization outputs.
We adopt the SOLVER tool in Microsoft Excel to minimize this err in Eq. (15a) through

non-linear GRG optimization algorithm [46]. The settings of optimization option include the
precision of 1× 10−7 and a convergence of 0.0001. In the optimization process, the fitting
parameters are forced to be within a reasonable range in natural environment and are listed in
Table 2.

Table 2. Range of parameters for both atmosphere and ocean. Min and Max indicate the lower and
upper boundaries of these parameters in TAACA.

Parameter c0i c1i c2i mi c0j c1j c2j mj aph(440) adg(440) bbp(440)

Units — — — — — — — — m−1 m−1 m−1

Min 0 0 0 0 0 0 0 0 0.005 0.002 0.001

Max — — — 4 — — — 4 0.5 0.6 0.8

For nonlinear optimization, the initial values could be important for final optimization results
when the function is complex. We use three rounds of spectral optimization to minimize the
impact of initial values, with details of the iterative process described below.

1) With an assumption of the water reflectance at two NIR bands (745 and 862 nm) and two
SWIR bands (1238 and 1601 nm) being negligible, we first calculate the values of c0i, c1i,
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c2i, mi and c0j, c1j, c2j, mj (they are collectively termed as atmos in the following) obtained
by the polynomial fit for these four wavelengths of each observation:

ρ′,i(λ) ≈ ci
0 + ci

1(400/λ)
mi
+ ci

2(400/λ)
4 (16a)

ρ′,j(λ) ≈ cj
0 + cj

1(400/λ)
mj
+ cj

2(400/λ)
4 (16b)

2) We use these atmos values and the lower boundary values of the water parameters (see
Table 2) as the initial guess of the eleven unknown variables, along with a fixed Y value of
0.8 based on the NOMAD data set [47], to carry out the first round of spectral optimization.
This step produces first-round remote-sensing reflectance (Rrs,1) and new values for
atmospheric parameters atmos.

3) A new set of initial values for the inherent optical properties IOPs are calculated as follows
[39]:

aph,1(440) = 0.072[Rrs,1(443)/Rrs,1(550)]−1.62 (17a)

adg,1(440) = aph,1(440) (17b)

bbp,1(440) = 30aw(670)Rrs,1(670) (17c)

Further, an estimate of Y value for each pixel is obtained using an empirical relationship
[48],

Y1 ≈ 2[1 − 1.2exp(−0.9χ)] (18)

with χ =Rrs,1(443)/Rrs,1(551).

4) Using Y1 values and the new initial values for IOPs and atmos, a second round of
optimization is carried out to derive both water and atmospheric properties by TAACA,
subsequently new remote-sensing reflectance (Rrs,2) is retrieved. With these Rrs,2, a new
set of initial values of IOPs and Y are estimated following the approaches of the previous
round, and a new round of spectral optimization is carried out, which resulted in another
set of Rrs (Rrs

TAACA) and atmospheric properties. These are considered the final outputs
through TAACA, as sensitivity tests show no significant difference with more iterations. A
schematic chart of the above process of TAACA is shown in Fig. 3, and the differences
between POLYMER and TAACA are summarized in Table 3.

Fig. 3. Flowchart and the iterations of TAACA to obtain Rrs(λ) from Level 1 top-of-
atmosphere reflectance.
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Table 3. Comparison of ocean reflectance model, atmospheric reflectance model and the method
of spectral optimization between standard POLYMER and TAACA.

 

Table 3. Comparison of ocean reflectance model, atmospheric reflectance model and the method of 

spectral optimization between standard POLYMER and TAACA. 

 POLYMER TAACA 

Ocean reflectance 

model 

Rrs(λ, Chl, bbNC) 

(Morel and Maritorena, 2001) 

BRDF is not considered 

Rrs (λ, aph(440), adg(440), bbp(440)) 

(Lee et al., 1999) 

BRDF is not considered 

Atmospheric 

reflectance model 

𝑐0 + 𝑐1𝜆
−1 + 𝑐2𝜆

−4  

Three unknown variables: c0, c1, c2 

With correction of ozone absorption and 

Rayleigh scattering 

𝑐0 + 𝑐1(400/𝜆)
𝑚 + 𝑐2(400/𝜆)

4  

Four unknown variables: c0, c1, c2, m 

With correction of ozone absorption  

Data used in the 

processing 

Measurement from one sun-sensor 

geometry 

Measurements from two same-day 

sun-sensor geometries  

Method of spectral 

optimization 

Simplex method “Solver” in Microsoft Excel 

Cost function Mean square error of ρ’ Similar to Lee et al., [42] 

 

Different from the target of POLYMER for processing MERIS data, here the target is VIIRS
measurements, and the spectral bands are adjusted accordingly, where the visible bands (i.e.,
410, 443, 486, 551 and 671 nm) and NIR bands (i.e., 745 and 862 nm) are employed in TAACA
spectral optimization.

2.3. Metrics to measure algorithm performance

To quantitatively evaluate the performance of TAACA and other AC algorithms, we adopt the
following metrics as a quantitative measure, including the root mean square error (RMSE),
unbiased root mean square error (uRMSE), and bias (δ). They are calculated as

RMSE =

√√√√√ N∑
i=1
(Qi,1 − Qi,2)

2

N
(19a)

uRMSE =

√√√√√ N∑
i=1
(2 × (Qi,1 − Qi,2)/(Qi,1 + Qi,2))

2

N
(19b)

δ =

N∑
i=1
(Qi,1 − Qi,2)

N
(19c)

where Qi,1 and Qi,2 refer to the retrieved products and the simulated (or measured) properties,
respectively, and N is the number of matching pairs.

We further use the cosine distance to measure the spectral similarity between the retrieved and
simulated Rrs spectra [e.g. [49]],

cos(α) =

N∑
i=1

Rrssim,iRrsret,i√
N∑

i=1
(Rrssim,i)

2

√
N∑

i=1
(Rrsret,i)

2

(20)

with α the angle between the simulated (or measured) Rrs,sim and the retrieved Rrs,ret spectrum. A
smaller angle indicates closer matches of the two spectra.
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3. Validation with synthetic data

3.1. Generation of synthetic data

We first verified the feasibility of TAACA with a synthetic dataset, which was generated by
a Coupled Ocean Atmosphere Radiative Transfer (COART) model [50] based on the Santa
Barbara DISORT Atmospheric Radiative Transfer (SBDART) code [51], with ocean contribution
simulated by Hydrolight [52]. The ocean reflectance was simulated with aph(440), adg(440), and
bbp(440) ranging from 0.02 to 0.2 m−1, 0.02 to 0.2 m−1, and 0.005 to 0.035 m−1, respectively,
for which seven values equally spaced. For each combination of IOP parameters, a variety of
atmospheric conditions were used:

(1) Variable observation geometries: two relative azimuth angles (30° and 120°), three solar
zenith angles (35°, 45°, and 55°), and three sensor viewing zenith angles (40°, 50°, and
60°);

(2) Variable optical thicknesses of aerosol at 865 nm: 0.1, 0.2 and 0.3;

(3) Four aerosol models by combining Shettle and Fenn [16] with Ahmad et al. [53]: O50,
O90, U50 and U90;

(4) The altitudes of aerosol layer are at 3 km and 5 km.

The center wavelength of simulated TOA reflectance is set following VIIRS, and the resulted
range of Rrs is ∼0.0001–0.04 sr−1 for these wavelengths. Both non-absorbing aerosols (oceanic
aerosol models) and strongly absorbing aerosols (urban aerosol models) are considered. Then we
randomly select any pair of observing geometries (water properties kept the same, no restriction
on atmospheric properties) to represent two consecutive observations of the same pixel. As
a result, 3,292 cases were compiled, of which half are non-absorbing and half are strongly
absorbing aerosol cases. The simulated TOA reflectance were then processed with TAACA, and
the retrieved products (Rrs spectra and the inherent optical properties (a(440) and bbp(440))) are
compared with those from COART.

3.2. Performance of TAACA with the synthetic dataset

It is found that TAACA performed very well with the synthetic dataset, especially for cases
of strongly absorbing aerosols. Scatterplots are shown in Fig. 4 for a visual comparison, with
detailed statistical evaluations presented in Table 4. Specifically, for both non-absorbing and
strongly absorbing aerosols, the biases of the retrieved Rrs are the smallest at 486 and 551 nm,
with a linear slope close to 1.0 and R2 ≈ 1.00 [Figs. 4(c) and 4(d)]. Rrs of these two wavelengths
also show small values of RMSE (∼2.4 (×10−4) sr−1 and 2.1 (×10−4) sr−1, see Table 4) and
uRMSE (∼6.6% and ∼4.9%, see Table 4). The slope for Rrs(671) is also close to 1.0 [Fig. 4(e)],
with R2 value as ∼0.98. The two blue wavelengths, 410 nm and 443 nm, show higher uRMSE
(∼10-12%) due to the much lower Rrs values (many values are around 0.0008 sr−1) in these
blue wavelengths, but matching likely the best accuracy of obtaining Rrs in field measurements
[54]. Further, the α values (mean α ≈ 0) indicate the Rrs spectra from TAACA exhibited very
high spectral consistency with the simulated Rrs spectra. More importantly, the performance of
TAACA show no separation between non-absorbing and strongly absorbing aerosols, indicate a
strong potential of TAACA for many coastal waters where absorbing aerosols are quite common.
For comparison, we also applied the standard POLYMER algorithm [22] to process the

simulated datasets, with results shown in Fig. 5. For non-absorbing aerosols, Rrs at each
wavelength is also retrieved very well by POLYMER, with very high R2 values (∼0.99) and
low RMSE (∼4.6×10−4 sr−1) and uRMSE (∼7.5%) (Table 5). The results also show that the
performance of retrieved Rrs(486) and Rrs(551) [Figs. 5(c) and 5(d)] is better than that of
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Fig. 4. Scatterplots between the simulated Rrs (indicated by subscript “sim”) and the
TAACA-retrieved Rrs (indicated by subscript “ret”) for bands 410–671 nm. The black
dash-line represents the 1:1 line, and the green line is linear regression of all datasets (both
non-absorbing and strongly absorbing aerosols) with the fitting parameters shown in the
plots.

Table 4. Statistical results of TAACA retrieved remote-sensing reflectance (Rrs) for dataset
synthesized by COART. The value within the parentheses for cos(α) refers to its standard deviation.

Band
aN RMSE (×10−4 sr−1) uRMSE (%) δ (×10−4 sr−1)
bnon-
absorbing

cstrongly
absorbing

non-
absorbing

strongly
absorbing

non-
absorbing

strongly
absorbing

non-
absorbing

strongly
absorbing

410 1646 1646 4.7 5.5 11.3 12.2 3.2 3.3

443 1646 1646 3.2 3.5 9.3 10.1 1.9 2.0

486 1646 1646 2.3 2.4 6.5 6.6 0.8 0.7

551 1646 1646 2.1 2.1 4.8 4.9 0.1 0.1

671 1646 1646 0.5 0.5 7.3 7.4 -0.3 -0.3

cos(α)
non-absorbing 0.99 (0.0005)

strongly absorbing 0.99 (0.0006)

aN is the number of coupled water-atmosphere cases.
bnon-absorbing refers to the simulated cases with oceanic aerosols.
cstrongly absorbing refers to the simulated cases with urban aerosols.

Rrs(410) and Rrs(443) [Figs. 5(a) and 5(b)], which is consistent with the results of TAACA. In
contrast, for strongly absorbing aerosols, Rrs(410) and Rrs(443) retrieved by POLYMER are
much lower than known Rrs, with uRMSE as ∼39.5% and ∼22.2%, respectively, for 410 nm and
443 nm (Table 5). These results clearly indicate a necessity to revise the POLYMER scheme for
processing measurements associated with strongly absorbing aerosols.
The relationships between the known and retrieved inherent optical properties (a(440) and

bbp(440)) by TAACA are presented in Fig. 6. Strong agreements are observed for these inherent
optical properties, although the retrieved values are found slightly higher (∼8-14%) than known
values. This is a result of overestimated Y values [see Eq. (17)] compared to that used in the
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Fig. 5. As Fig. 4, but the synthetic dataset was processed by POLYMER. In these plots, the
blue and red lines show linear regression of non-absorbing and strongly absorbing aerosols,
respectively, with the fitting parameters shown in the plots.

Table 5. As Table 4, but the COART-synthesized dataset was processed by standard POLYMER.

Band
Na RMSE uRMSE (%) δ

non-
absorbing

strongly
absorbing

non-
absorbing

strongly
absorbing

non-
absorbing

strongly
absorbing

non-
absorbing

strongly
absorbing

410 3292 3292 4.6E-4 0.0023 7.5 39.5 3.2E-4 -0.0014

443 3292 3292 2.7E-4 0.0012 4.0 22.2 1.9E-4 -4.0E-4

486 3292 3292 1.1E-4 0.0010 1.3 29.7 7.1E-5 8.1E-4

551 3292 3292 3.9E-5 0.0014 0.7 26.1 1.5E-5 0.0013

671 3292 3292 4.1E-5 3.6E-4 4.0 27.4 -3.1E-5 3.3E-4

cos(α)
non-absorbing 0.99 (0.0002)

strongly absorbing 0.98 (0.0058)

aNote here the number is two times that in Table 4 is because that TAACA uses two sun-sensor geometries for each ρw
(see Fig. 1), while POLYMER uses one sun-sensor geometry for each ρw, so the coupled ocean-atmosphere cases for
TAACA are half of that for POLYMER, although the number of ρw is the same.

simulations (0.8), which then propagated to the estimated IOPs. Again, there are no obvious
differences in the performance of non-absorbing versus strongly absorbing aerosols (see Fig. 6),
further support the application of TAACA for processing measurements associated with absorbing
aerosols.
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Fig. 6. Scatterplots between synthetic IOPs (a(440) and bbp(440)) (indicated by subscript
“sim”) and the TAACA-retrieved properties (indicated by subscript “ret”). The black
dash-line represents the 1:1 line, and the green line is the linear regression of all datasets
(both non-absorbing and strongly absorbing aerosols) with the statistical measures shown in
the plots.

4. Validation with VIIRS measurements

We further evaluated the performance of TAACA with VIIRS data, where field Rrs measurements
taken during 2015–2017 over Boston Harbor (BH) and Massachusetts Bay (MB) were used as
“ground truth”. Massachusetts Bay is a bay on the East Coast of the United States that forms part
of the central coastline of the Commonwealth of Massachusetts. As a semi-enclosed bay, water
properties and their distribution are largely affected by winds, tides and other factors. Compared
with Boston Harbor, the water of Massachusetts Bay is relatively less turbid and dominated
by gelbstoff and detritus. Due to its closeness to a populous city, the occurrence of absorbing
aerosols is quite common for these regions.

4.1. In situ measurements

Field measurements for validation of VIIRS products were carried out in seven days during
2015–2017 in BH-MB, with sampling locations given in Fig. 7. Most of the stations are
located in MB, except three stations are located in BH. In situ Rrs was measured following the
skylight-blocked approach (SBA) [55]. Specifically, the water-leaving radiance was directly
measured with a hyperspectral radiometer (HyperOCR, Satlantic Inc.), while the downwelling
plane irradiance (Ed, W m−2 nm−1) was measured by a hyperspectral irradiance radiometer
(HyperOCR, Satlantic Inc.). These two radiometers measure signals from ∼349.7 to 804.6 nm in
137 spectral channels. All measurement and data processing followed the same protocols as Wei
et al. [56]. In 2015, the total absorption coefficient was measured with an AC-S meter (Wetlabs,
Inc., Philomath, OR) and the particulate backscattering coefficient was measured with a BB9
sensor (Wetlabs, Inc., Philomath, OR). Due to instrument issues, no AC-S or BB9 measurements
were made in 2016 and 2017.

4.2. VIIRS data

The VIIRS Level-1 calibrated radiance data were obtained from NOAA’s Comprehensive Large
Array-data Stewardship System, while Level-2 normalized water-leaving radiance (nLw) was
downloaded from CoastWatch [57], generated by MSL12 (the NOAA Multi-Sensor Level-1
to Level-2 processing system package) [58]. The Level-2 products contain nLw at bands 410,
443, 486, 551 and 671 nm (nLw at 745 and 862 nm for MSL12 are not included as operational
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Fig. 7. The locations of the 22 matchup stations (red circles) of seven days for field
measurements in Boston Harbor and Massachusetts Bay during 2015–2017. Note that a few
stations are at the same locations, so only 18 circles appear in the figure.

products in CoastWatch). To compare nLw with in situ measurement of Rrs, nLw is converted to
Rrs following:

Rrs(λ) = nLw(λ)/F0(λ) (21)

The products generated by MSL12 also contain the Level-2 quality control flags (l2_flags), which
were used to exclude questionable Rrs spectrum with the following flags: ATMFAIL (atmospheric
correction failure), LAND (land pixel), CLDICE (probable cloud or ice contamination), HILT
(very high or saturated observed radiance), HIGLINT (strong sun glint contamination), CLD-
SHDSTL (cloud straylight or shadow contamination) and ATMWARN (atmospheric correction is
suspect). In this study, we focused on the sub-scene of BH and MB where in situ measurements
of Rrs are available to validate satellite products.
The time constraint for matchups between in situ and VIIRS retrievals is within ±2 h. We

eliminated the pairs where the coefficient of variation (CV) within a VIIRS 3 × 3 box centered
on the location of in situ station is > 0.15 [18], and the number of valid VIIRS Rrs retrievals in
the box is less than 5 (half of the pixels within this box). Then the mean value of the valid pixels
is used as the VIIRS-retrieved value. As a result, twenty-two matchup stations (Fig. 7) from 7
days were obtained for this evaluation.

4.3. Results and discussions

4.3.1. Validation with matchup Rrs(λ)

Figure 8 shows a comparison between in situ Rrs and VIIRS Rrs (bands 410–671 nm) retrieved by
TAACA, MSL12 and POLYMER, respectively, for the twenty-two matchup stations from seven
days of field measurements. The statistical measures of this comparison for each wavelength are
summarized in Table 6. The results of the VIIRS MSL12 Rrs products for the first observation
(Rrs

MSL12,1st) of the seven days are excluded, as the l2_flags “CLDSHDSTL” and “ATMWARN”
are common for these first observations in a day for BH and MB. This is also evidenced by the
very low R2 values (<0.2, not shown) for Rrs at 410 nm and 443 nm between the MSL12 products
and in situ measurements for these first observations in a day. Why the first measurements of
VIIRS from the seven days show these flags is an interesting question, but it is beyond the scope
of this effort. For the second measurements during a day, as there are no operational products
from MSL12 for four stations, MSL12 has just 18 matchup stations. It is necessary to emphasize
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that since TAACA assumes water properties remain the same for the two consecutive VIIRS
observations, just one set of Rrs spectra are obtained each day from the two VIIRS measurements.
Whereas by its architecture in algorithm design, both MSL12 and POLYMER will obtain a set of
Rrs spectra for each VIIRS observation.

Fig. 8. Scatterplots between VIIRS Rrs(λ) and in situ Rrs(λ) at bands of 410, 443, 486,
551 and 671 nm for all valid matchup pairs measured in BH-MB during 2015 to 2017. The
black dashed line refers to the 1:1 line, and the green line represents linear regression with
the statistical measures showing in the plots. (a) For results from TAACA; (b) For results
from MSL12 for the second VIIRS observation; (c) For results from POLYMER for the first
observation; (d) As (c), but for results of the second VIIRS observation in a day.

Among the three schemes for atmospheric correction, the Rrs retrieved by TAACA (Rrs
TAACA)

matched best with in situ Rrs (Rrs
in−situ) for the 22 matchup stations, where R2 is about 0.95 and

RMSE is ∼3.3×10−4 sr−1 [Fig. 8(a)]. The parameter of spectral similarity (cos(α)) also shows
that TAACA has generated very consistent Rrs spectra compared with field measurements (see
Table 6). Specifically, the results of each visible wavelength all show strong agreement with in
situ measurements, where RMSE varies from 2.1 (×10−4) sr−1 to 4.9 (×10−4) sr−1, the slope
varies from 0.74 to 0.96, and R2 varies from 0.59 to 0.96 (see Table 6). The retrieved Rrs

TAACA

show the best accuracy at 443 and 486 nm, with RMSE of 2.1 (×10−4) sr−1 and 3.4 (×10−4) sr−1,
and uRMSE of 12.2% and 11.5%, respectively. At present, Rrs(410) indicates higher differences
with a slope of 0.74, R2 of 0.59 and δ of -1.1 (×10−4) sr−1. This is in part because Rrs(410) is
very low (∼0.0015 sr−1) for these dark coastal waters.

In contrast, for these measurements, the performance of the operational Rrs products from
MSL12 for the second observation (Rrs

MSL12,2nd) in a day exhibits lower accuracy than Rrs
TAACA

at each visible wavelength [Fig. 8(b)], where both RMSE and uRMSE from MSL12 are higher
than those from TAACA. Especially, MSL12 significantly underestimated Rrs(410), with δ as -7.6
(×10−4) sr−1 and R2 as 0.39 (see Table 6), sometimes Rrs(410) even became negative [Fig. 8(b),
red dots]. These stations with negative Rrs(410) are associated with the l2_flag “ABSAER”,
indicating the presence and influence of absorbing aerosols, as reported before [59–61].
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Table 6. Statistical measures for all matchup data of Rrs derived from TAACA, MSL12 and standard
POLYMER algorithms, respectively, for VIIRS measurements in BH-MB.

Band Scheme N
RMSE

uRMSE (%)
δ

Slope R2
(×10−4 sr−1) (×10−4 sr−1)

410

aTAACA 22 2.2 17.2 -1.1 0.74 0.59

MSL122nd 18 11.0 3890.4 -7.6 3.07 0.39

POLYMER1st 22 24.0 8384.7 -14.0 -4.11 0.41

POLYMER2nd 22 16.0 289.9 -8.6 -0.22 0.002

443

TAACA 22 2.1 12.2 -0.6 0.83 0.83

MSL122nd 18 6.3 58.9 -3.3 1.67 0.49

POLYMER1st 22 17.0 1586.4 -6.6 -1.75 0.57

POLYMER2nd 22 10.0 99.3 -5.2 -0.17 0.02

486

TAACA 22 3.4 11.5 1.7 0.92 0.92

MSL122nd 18 6.2 34.1 -1.4 0.95 0.49

POLYMER1st 22 12.0 41.41 6.1 -0.01 0.0004

POLYMER2nd 22 12.0 40.8 5.2 -0.10 0.06

551

TAACA 22 4.9 15.3 2.8 0.96 0.96

MSL122nd 18 7.7 29.6 0.4 0.99 0.84

POLYMER1st 22 14.0 47.6 12.0 0.72 0.86

POLYMER2nd 22 20.0 54.0 10.0 0.41 0.22

671

TAACA 22 3.2 27.3 -1.1 0.87 0.87

MSL122nd 18 3.0 94.0 -0.6 0.91 0.80

POLYMER1st 22 8.7 97.6 3.9 -0.05 0.02

POLYMER2nd 22 8.3 96.7 4.9 0.17 0.10

cos(α)
TAACA MSL122nd POLYMER1st POLYMER2nd

0.99 0.93 0.92 0.93

aTAACA stands for results based on processingmeasurements from two sun-sensor geometries simultaneously. MSL122nd

refers to NOAA’s operational products for the second observation. POLYMER1st and POLYMER2nd refer to the products
retrieved by POLYMER for the first and second observations, respectively.

For the evaluated VIIRS measurements, POLYMER obtained better performance for Rrs(486)
and Rrs(551), and did not show difference for the two observations in a day [see Figs. 8(c) and
8(d)]. These results are consistent with that reported in previous researches in evaluating the
performance of POLYMER for turbid coastal waters [23,24], which showed that the accuracy
of retrieved Rrs from POLYMER at high blue and green bands are better than that at low blue
bands. However, it appears that the standard POLYMER algorithm is also having difficulties for
such coastal waters for both observations in a day, although it showed improved performance in
dealing with sun glint [22,23]. Compared with MSL12, the performance of these two approaches
are comparable at 486 and 551 nm, but the performance of POLYMER is worse than MSL12
at low blue bands, particularly at 410 nm, where the number of negative Rrs(410) is much
more than that from MSL12 (see Figs. 8(c) and 8(d)]. The reason for the worst performance of
the standard POLYMER algorithm for such an environment is that the Rayleigh contributions
are also dependent on the altitude of absorbing aerosols [19], thus the commonly developed
Rayleigh-reflectance LUTs may not be applicable here as VIIRS cannot provide the altitude
information of aerosols. As a result, the atmospheric component in ρt after the traditional Rayleigh
correction [35] may not be effectively expressed using a polynomial function as Eq. (11). In
contrast, TAACA uses a similar polynomial function to simulate the total atmospheric reflectance
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without removing the Rayleigh contribution as an independent step [12], rather to remove the
contributions of both Rayleigh and aerosols simultaneously. This approach apparently works
better when there are absorbing aerosols, a situation a LUT of Rayleigh reflectance could not be
calculated beforehand without knowing the altitude details of such aerosols.

4.3.2. Evaluation of VIIRS Rrs image product

The above evaluations with matchup in situ Rrs show excellent performance of TAACA for waters
in BH-MB, where operational MSL12 and standard POLYMER run into difficulties due to the
existence of absorbing aerosols. But these are limited to the matchup stations. To gain more
insights of TAACA in such a challenging environment, this evaluation is extended to pixels of
VIIRS measurements marked by the flag “ABSAER”, an indicator of absorbing aerosol in satellite
ocean color measurements. As examples, for the second VIIRS observations on September 17th,
2015 and August 1st, 2017 in BH-MB, Figs. 9(a) and 9(e) show the pixels (yellow color) marked
by the flag “ABSAER” from MSL12. It is found that most coast pixels indicate the presence
of strongly absorbing aerosols, although sometimes the instrument stripping may confuse this
flag. After reprojection, the stripping is eliminated in VIIRS Level 2 products as shown in
Figs. 9(b)–9(h) [except Fig. 9(e)]. Apparently, due to absorbing aerosols, the Rrs(410) values
of pixels with the flag “ABSAER” retrieved by MSL12, although generally positive, are very
close to 0 [see Figs. 9(b) and 9(f)]. These image products further indicate the impact of strongly
absorbing aerosols on the performance of the traditional atmospheric correction algorithm. Also
included are results from POLYMER [Figs. 9(c) and 9(g)] for comparison. Although the values
of Rrs(410) appear more valid in offshore waters, there are many negative values in BH and
coastal regions. In contrast, Rrs(410) from TAACA [Figs. 9(d) and 9(h)] shows more reasonable
values.

Fig. 9. (a) and (e) show the spatial distribution of the l2_flag “ABSAER” (yellow color) in
BH-MB generated by MSL12 for the second VIIRS observations on September 17th, 2015
(first row) and August 1st, 2017 (second row). (b) to (h) show VIIRS Rrs(410) of images
in (a) and (e) obtained by MSL12, POLYMER, and TAACA, respectively. Note that the
stripping effects showing in (a) and (e) were smoothed out when they are reprojected to
Level 2 products.

To further highlight the different performance of these three AC schemes, the statistical
distributions of Rrs(410) and Rrs(443) for the pixels marked by “ABSAER” retrieved by MSL12,
POLYMER, and TAACA for the seven days of VIIRS measurements are calculated, respectively,
with results shown in Fig. 10. Again, the results from MSL12 correspond to the second VIIRS
observation of each day. Also included in Fig. 10 is the histogram of Rrs(410) and Rrs(443) from
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field measurements. While in situ measurements show Rrs(410) in a range of 0.001–0.002 sr−1

for these waters, Rrs(410) values from MSL12 are close to zero, and ∼40% from POLYMER
having negative Rrs(410) [see Fig. 10(a)]. In contrast, Rrs(410) values from TAACA show strong
agreement with in situ measurements. For 443 nm, the distributions of Rrs(443) from TAACA,
MSL12 and POLYMER [see Fig. 10(b)] show smaller difference compared to that for 410 nm,
although Rrs(443) from MSL12 appears negatively biased compared to that from TAACA and
POLYMER, and that from in situ measurements.

Fig. 10. Statistical distributions of VIIRS Rrs(410) (a) and Rrs(443) (b) retrieved by
TAACA, MSL12, and POLYMER for the seven days of VIIRS observations over BH-MB in
2015-2017. These are specifically for the pixels marked by the l2_flag “ABSAER”. Also
included is the distribution of Rrs(410) and Rrs(443) of this region obtained from in situ
measurements.

In addition to the evaluation of Rrs at a specific wavelength, the quality of the Rrs spectra from
VIIRS obtained by TAACA, MSL12 and POLYMER, for pixels flagged by “ABSAER” or not, is
characterized using the quality assurance (QA) system [49], with results presented in Fig. 11.
This is because that such a QA system provides an objective measure of the quality of each
Rrs spectrum. For the seven days of VIIRS measurements, generally there are less high-quality
Rrs spectra (QA≥0.8, the highest is 1.0) from MSL12 and POLYMER for pixels flagged by
“ABSAER”. Specifically, for pixels flagged by “ABSAER”, high-quality Rrs spectra account
for ∼40% for results from MSL12 [Fig. 11(a)], while just ∼30% for results from POLYMER
[Fig. 11(b)]. These results echo the impact of absorbing aerosols on the quality of Rrs from
MSL12 and POLYMER. In contrast, for pixels with and without the “ABSAER” flag, ∼95% of
the QA scores for Rrs spectra from TAACA are nearly 1.0 [Figs. 11(c) and 11(f)], which are more
than double or triple of those from MSL12 or POLYMER. These results further demonstrate
the significantly improved Rrs products from TAACA for these measurements. Note that when
there are absorbing aerosols, schemes like MSL12 and POLYMER require information of the
vertical distribution of such aerosols, which could not be available from traditional passive ocean
color measurements. Using water properties as a constraint of properties at the lower boundary
of the atmosphere-ocean coupled system (see Fig. 1), TAACA is showing strong potentials for
improving Rrs retrievals when processing satellite ocean color measurements of such kind of
environment. It is necessary to point out that both TAACA and POLYMER employed Rrs models
in the process, but no such Rrs model for MSL12, i.e. MSL12 provides an independent retrieval
of water signal, therefore higher QA scores could be expected for schemes like TAACA and
POLYMER.
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Fig. 11. Distributions of QA scores for the VIIRS-derived Rrs from MSL12, POLYMER,
and TAACA of the seven days of VIIRS observations in BH-MB during 2015-2017. The
first row is for the pixels with the “ABSAER” flag, while the second row is for the pixels
without the “ABSAER” flag.

4.3.3. Validation with matchup datasets of IOPs

To further understand the algorithm performance, an extended evaluation of IOPs retrieval
from VIIRS ocean color measurements is conducted. Figure 12 presents a comparison between
a(440) and bbp(440) estimated from TAACA versus in situ measurements made on September
17th and 18th, 2015. Also included are the IOPs derived from Rrs

MSL12,2nd, Rrs
POLYMER,1st and

Rrs
POLYMER,2nd using the same spectral optimization algorithm, but simply using Rrs, rather

than ρt, as the input. Apparently, both a(440) and bbp(440) retrieved by TAACA show strong
agreement with the in situ measurements (Fig. 12, green line), where R2 values are ∼0.89 and
∼0.95, and uRMSE of ∼10.7% and ∼20.2%, respectively. For the comparisons of a(440), the
performance of POLYMER is better than that of MSL12, but for the results of bbp(440), Rrs
from MSL12 produced better results. The much higher a(440) from Rrs

MSL12,2nd and Rrs
POLYMER

than in situ measurements further reflects the lower Rrs values in the blue bands from MSL12
and POLYMER (see Fig. 10) due to the appearance of absorbing aerosols as indicated by the
“ABSAER” flag.

Due to space limitations and non-essentiality, as examples, the spatial distributions of retrieved
a(440) and bbp(440) from Rrs

TAACA, Rrs
MSL12,2nd, Rrs

POLYMER,1st and Rrs
POLYMER,2nd, respectively,

for VIIRS measurements on September 17th, 2015 of the study area are presented in Supplement 1.
The results show that in general the range of a(440) and bbp(440) from Rrs

MSL12,2nd, Rrs
POLYMER,1st

and Rrs
POLYMER,2nd are nearly a factor of 2 wider than their ranges of in situ measurements, while

the ranges of a(440) and bbp(440) from TAACA are consistent with field measurements. These
comparisons provide further support of TAACA for processing VIIRS measurements in such a
challenging environment.

https://doi.org/10.6084/m9.figshare.12751847
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Fig. 12. Comparison between the VIIRS-derived inherent optical properties and in situ
measurements for VIIRS observations on September 17th and 18th, 2015. (a) for a(440)
and (b) for bbp(440). Results from RrsTAACA (green), RrsMSL12,2nd (blue), RrsPOLYMER,1st

(yellow), and RrsPOLYMER,2nd (red) are presented in different colors.

5. Conclusions

We have developed a novel retrieval scheme – two-angle atmospheric correction algorithm,
a.k.a. TAACA – to perform atmospheric correction on satellite ocean color measurements,
with a distinctive goal of obtaining improved Rrs when there are strongly absorbing aerosols.
Unlike conventional atmospheric correction schemes, TAACA takes two (could be extended to
more) observations in a day to derive water and atmospheric properties simultaneously, where
atmospheric properties are allowed to vary during a day, but water properties are kept the same.
In essence, water properties for the two (or more) observation geometries work as a constraint of
the lower boundary in the ocean-atmosphere coupled radiative transfer system, thus significantly
improved the mathematical solutions of water and atmospheric properties from passive ocean
color measurements, especially when there are absorbing aerosols. In particular, because of
the use of analytical models for contributions from the atmosphere, TAACA bypasses the need
to establish look-up-tables for atmospheric contributions in advance, which is difficult (if not
impossible) for strongly absorbing aerosols due to its dependence on the vertical distributions
of aerosols. A drawback of TAACA is that water properties are assumed the same for the two
observations, which are valid for a relatively short time interval, but will suppress some subtle
temporal variations, thus can only be viewed as a temporal average between the two (or more)
observations.
Evaluation of TAACA with both synthetic data and VIIRS measurements show strong

applicability in coastal waters to obtain robust Rrs, especially when there are strongly absorbing
aerosols where conventional AC algorithms having difficulties. Compared with both MSL12 and
POLYMER, TAACA generated significantly improved Rrs in the blue bands for waters of Boston
Harbor and Massachusetts Bay from VIIRS measurements. While results of this study show
excellent performance of TAACA in handling absorbing aerosols, certainly more evaluations with
a wider range of atmosphere and water properties, as well as the impact of the various modeling
components, are necessary in order to obtain a complete and comprehensive characterization of
TAACA for satellite ocean color remote sensing.
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